On a Conjecture about the Randić Index and Diameter

نویسندگان

  • Meng Zhang
  • Bolian Liu
چکیده

The Randić index of a graph G is defined as R(G) = ∑ u∼v (d(u)d(v))− 2 , where d(u) is the degree of vertex u, and the summation goes over all pairs of adjacent vertices u, v. A conjecture of R(G) for connected graph with n vertices is as follows: R(G)−D √2− n+1 2 and R(G) D 1 2 + √ 2−1 n−1 , where D is the diameter of G. In this paper, we prove that this conjecture is true for unicyclic graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Randić index and Diameter of Chemical Graphs

Using the AutoGraphiX 2 system, Aouchiche, Hansen and Zheng [2] proposed a conjecture that the difference and the ratio of the Randić index and the diameter of a graph are minimum for paths. We prove this conjecture for chemical graphs.

متن کامل

About a conjecture on the Randić index of graphs

For an edge uv of a graph G, the weight of the edge e = uv is denoted by w(e) = 1/ √ d(u)d(v). Then

متن کامل

On a Relation Between Randić Index and Algebraic Connectivity

A conjecture of AutoGraphiX on the relation between the Randić index R and the algebraic connectivity a of a connected graph G is: R a ≤ ( n− 3 + 2√2 2 ) / ( 2(1− cos π n ) ) with equality if and only if G is Pn, which was proposed by Aouchiche et al. [M. Aouchiche, P. Hansen and M. Zheng, Variable neighborhood search for extremal graphs 19: further conjectures and results about the Randić inde...

متن کامل

On Harmonic Index and Diameter of Unicyclic Graphs

The Harmonic index $ H(G) $ of a graph $ G $ is defined as the sum of the weights $ dfrac{2}{d(u)+d(v)} $ of all edges $ uv $ of $G$, where $d(u)$ denotes the degree of the vertex $u$ in $G$. In this work, we prove the conjecture $dfrac{H(G)}{D(G)} geq dfrac{1}{2}+dfrac{1}{3(n-1)}  $ given by Jianxi Liu in 2013 when G is a unicyclic graph and give a better bound $ dfrac{H(G)}{D(G)}geq dfra...

متن کامل

A note on Fouquet-Vanherpe’s question and Fulkerson conjecture

‎The excessive index of a bridgeless cubic graph $G$ is the least integer $k$‎, ‎such that $G$ can be covered by $k$ perfect matchings‎. ‎An equivalent form of Fulkerson conjecture (due to Berge) is that every bridgeless‎ ‎cubic graph has excessive index at most five‎. ‎Clearly‎, ‎Petersen graph is a cyclically 4-edge-connected snark with excessive index at least 5‎, ‎so Fouquet and Vanherpe as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012